DAG SEMINAR, PROBLEM SET 3 (OCT. 10-17).

Solving this PS necessitates reading Sect. 2.1-2.2 in the book

- 1. Let \mathcal{C} be an ordinary category. Consider the 2-category $\{Grpds\}^{\mathcal{C}^{op}}$ of functors $\mathcal{C}^{op} \to \{Groupoids\}$. Consider the 2-category Cats/ \mathcal{C} of categories over \mathcal{C} (we only allow equivalences between categories over \mathcal{C} and natural transformations that are isomorphisms). Note that both sides are actually 2-groupoids (i.e., all 1-morphisms and 2-morphisms are invertible).
- (a) Construct a 2-functor $\{Grpds\}^{\mathcal{C}^{op}} \to Cats/\mathcal{C}$, and show that it's fully faithful¹.
- (b) Show that the essential image of the functor in (a) consists of those $p: \mathcal{C}' \to \mathcal{C}$, such that for any $\mathbf{c}' \in \mathcal{C}'$, the functor p induces an equivalence $\mathcal{C}'_{/\mathbf{c}'} \to \mathcal{C}_{/p(\mathbf{c}')}$.
- **2.** Let S be a simplicial set and let $p: X \to S$ be a left fibration.
- (a) Show that for any $s \in S$, the simplicial set X_s is a Kan simplicial set (cf. PS 1, Problem 1).
- (b) For every edge $e: s_1 \to s_2$ in S, construct the map $e_!: X_{s_1} \to X_{s_2}$ well-defined up to homotopy.
- (c) Show that the assignment $s \mapsto X_s$, $(e: s_1 \to s_2) \mapsto e_!$ defines a functor from the fundamental groupoid of S to the homotopy category of Kan simplicial sets.
- (d) Assume that S is Kan. Show that in this case the maps $e_!: X_{s_1} \to X_{s_2}$ are homotopy equivalences and that p is a Kan fibration.
- (e) The previous point can be strengthened: namely, we have the theorem that says that for any S and a left fibration $p: X \to S$, p is a Kan fibration if and only if the maps $X_{s_1} \to X_{s_2}$ are homotopy equivalences. Verify the Kan condition on simplices of dimensions 0,1, and 2.
- **3.** We say that a map of simplicial sets $A \to A'$ is *left (resp., inner; right) anodyne* if it belongs to the class of maps generated by taking push-outs and retracts ² by the class of inclusions $\Lambda_i^n \hookrightarrow \Delta^n$ for $i \neq n$ (resp., $i \neq 0, n$; $i \neq n$).
- (a) Show that if a map is left/right anodyne, then it has a left lifting property with respect to left/right fibrations, defined as in Defn. 2.0.0.3. Show that if a map is inner anodyne, then any map $A \to X$, where X is a quasi-category can be extended to a map $A' \to X$.
- NB: There is a general theorem (referred to as "the small object argument", see Prop. A.1.2.5) that says a map $A \to A'$ is left/right anodyne if and only if it has a left lifting property with respect to all left/right fibrations.
- (b) Show that if $A \to A'$ is an arbitrary monomorphism, and $B \to B'$ is left anodyne, then

$$(A*B') \underset{A*B}{\sqcup} (A'*B) \hookrightarrow A'*B'$$

Date: October 11, 2010.

¹When talking about a 2-functor F between two 2-categories $\mathcal{D}_1 \to \mathcal{D}_2$, we say that it's fully faithful if it induces equivalences between Hom categories.

²plus certain colimits, see Defn. A.1.2.2

is inner anodyne.

- (c) Deduce that if X is a quasi-category, and $f: K \to X$ be an arbitrary map of simplicial sets, then $X_{f/} \to X$ is a left fibration.
- **4.** (a) There is a theorem that says that if $A \to A'$ is left anodyne, and $B \to B'$ is an arbitrary embedding, then

$$(A \times B') \underset{A \times B}{\sqcup} (A' \times B) \hookrightarrow A' \times B'$$

is left anodyne. Argue that it's enough to prove this for $A \to A'$ being $\Lambda_i^n \hookrightarrow \Delta^n$ for $i \neq n$ and $B \to B'$ being $\partial \Delta^m \hookrightarrow \Delta^m$. Verify that the latter maps are indeed left anodyne for small values of n and m.

(b) Deduce that a map $p:X\to S$ is a left fibration in the sense of Defn 2.0.0.3., then the induced map

$$\operatorname{Maps}(\Delta^1, X) \to X \underset{S}{\times} \operatorname{Maps}(\Delta^1, S)$$

is a trivial Kan fibration (this is the definition of left fibration given during the lecture). Here $\operatorname{Maps}(\Delta^1, X) \to X = \operatorname{Maps}(\Delta^0, X)$ is given by evaluation on the 0-vertex, and similarly for the map $\operatorname{Maps}(\Delta^1, S) \to S$.

- (c) Let $p: X \to S$ be a left fibration. For an arbitrary simplicial set T/S we can form the simplicial set $\mathrm{Maps}_S(T,X)$. Show that it is Kan.
- (*d) Strengthen (c) to show that if a map $X \to Y$ between left fibrations is a pointwise equivalence over S, then it admits an inverse up to homotopy.
- **5.** Let S be a simplicial set. Consider the the (ordinary) category $(\$et_{\Delta})^{\mathfrak{C}[S]^{op}}$ of simplicial functors $\mathfrak{C}[S]^{op} \to \et_{Δ} and the (ordinary) category $\$et_{\Delta}/S$.³ In the lecture we defined the unstraightening functor $Un: (\$et_{\Delta})^{\mathfrak{C}[S]^{op}} \to \et_{Δ}/S .
- (a) For an object $F \in (\mathbb{S}et_{\Delta})^{\mathfrak{C}[S]^{op}}$ describe explicitly the simplices of the simplicial set Un(F).
- (b) Assume that F takes values in the subcategory $Kan \subset Set_{\Delta}$. Show that the resulting object $Un(F) \to S$ is a right fibration.
- **6.** Let $S \in \operatorname{Set}_{\Delta}$ and Un be as above. It is easy to see that the functor Un admits a left adjoint, denoted St and called the straightening functor. For a vertex $s \in S$; consider the simplicial set Δ^0 mapping to S via S; denote the resulting object of $\operatorname{Set}_{\Delta}/S$ by $\{s\}$. Consider the corresponding simplicial functor $St(\{s\}): \mathfrak{C}[S]^{op} \to \operatorname{Set}_{\Delta}$. Show that it's isomorphic to the Yoneda functor $\operatorname{Hom}_{\mathfrak{C}[S]}(-,s)$.
- 7. Let \mathcal{C} be a model category. Recall that two maps $f_1, f_2 \in \operatorname{Hom}_{\mathcal{C}}(x, y)$ are called homotopic if there exists a cylinder object $x \sqcup x \to C(x)$ and a map $F: C(x) \to y$ that restricts to $f_1 \sqcup f_2$. Assume now that x is cofibrant and y is fibrant. Show that homotopy is an equivalence relation on $\operatorname{Hom}_{\mathcal{C}}(x, y)$ and that the quotient set canonically identifies with $\operatorname{Hom}_{\operatorname{Ho}(\mathcal{C})}(x, y)$.

³Both of these are naturally simplicial categories, but we consider them as ordinary categories by taking 0-simplices of the Hom sets.